Wavelets, fractals, and radial basis functions
نویسندگان
چکیده
Wavelets and radial basis functions (RBFs) lead to two distinct ways of representing signals in terms of shifted basis functions. RBFs, unlike wavelets, are nonlocal and do not involve any scaling, which makes them applicable to nonuniform grids. Despite these fundamental differences, we show that the two types of representation are closely linked together . . . through fractals. First, we identify and characterize the whole class of self-similar radial basis functions that can be localized to yield conventional multiresolution wavelet bases. Conversely, we prove that for any compactly supported scaling function ( ), there exists a onesided central basis function +( ) that spans the same multiresolution subspaces. The central property is that the multiresolution bases are generated by simple translation of + without any dilation. We also present an explicit time-domain representation of a scaling function as a sum of harmonic splines. The leading term in the decomposition corresponds to the fractional splines: a recent, continuous-order generalization of the polynomial splines.
منابع مشابه
Adopting the Multiresolution Wavelet Analysis in Radial Basis Functions to Solve the Perona-Malik Equation
Wavelets and radial basis functions (RBF) have ubiquitously proved very successful to solve different forms of partial differential equations (PDE) using shifted basis functions, and as with the other meshless methods, they have been extensively used in scattered data interpolation. The current paper proposes a framework that successfully reconciles RBF and adaptive wavelet method to solve the ...
متن کاملWavelets and Radial Basis Functions: a Unifying Perspective
Wavelets and radial basis functions (RBF) are two rather distinct ways of representing signals in terms of shifted basis functions. An essential aspect of RBF, which makes the method applicable to non-uniform grids, is that the basis functions, unlike wavelets, are non-local|in addition, they do not involve any scaling at all. Despite these fundamental di erences, we show that the two types of ...
متن کاملThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کاملBiorthoganal Wavelet Packets and Mel Scale Analysis for Automatic Recognition of Arabic Speech via Radial Basis Functions
In this paper, a Neural Network (NN) approach for the recognition of the Arabic digits is presented. The two phases of training and testing in a Radial Basis Functions (RBF) type network is described. Biorthogonal Wavelets are constructed and used for analysis of generated subwords of the digits. This approach decomposes spoken Arabic digits based on the acoustical information contained within ...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 50 شماره
صفحات -
تاریخ انتشار 2002